COPYRIGHT NOTICE: C. A. Meier, ed.: Atom and Archetype: The Pauli/Jung Letters, 1932-1958 is published by Princeton University Press and copyrighted, © 2001, by Princeton University Press. All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from the publisher, except for reading and browsing via the World Wide Web. Users are not permitted to mount this file on any network servers. For COURSE PACK and other PERMISSIONS, refer to entry on previous page. For more information, send e-mail to
[email protected] JUNG AND PAULI A Meeting of Rare Minds BY BEVERLEY ZABRISKIE Readers of the Swiss psychiatrist C. G. Jung are more familiar with Wolfgang Pauli's unconscious than with his waking life and achievement. Through Jung's Psychology and Alchemy--an exposition of "the problem of individuation" and "normal development . . . in a highly intelligent person"--depth psychologists have known the Nobel laureate's dreams, not his professional genius. Meanwhile, the scientists who continue Pauli's pursuit of the nature and composition of the material universe know little of the quantum physicist's depth exploration of his unconscious, his fascination with the interface of matter with psyche, and his collaboration with Jung in probing connections that appear to be acausal. In turn, many who know Jung's studies of psychic phenomena are not so at ease with his development of the parallels between psychic process and the material matrix in which the mental is embedded. For those who lack Jung's scientific background and grasp, his claim of an empirical method, his pursuit of the metaphors of alchemy, and his evocation of analogies in physics to psychic mechanisms have seemed far-fetched, tangential, difficult, or unnecessarily encumbering. Yet Jung persisted in pursuing the physical and meditative experiments of the alchemists and in perusing the findings of contemporary scientists. Throughout his career, Jung argued that his work would carry the gravitas of the relevant and enduring only if it had both a place in the history of thought and a context in the modern disciplines. This collection of letters between Jung and Pauli offers insightful information about a relationship that was valuable for both analytical psychology and quantum physics, two realms of investigation that at first seem to have no point of contact. Historically, physical science and religion have focused, from different perspectives, on the sources of the universe and its inhabitants. Religion and psychology, in a similar fashion, have had overlapping concerns about the nature of existence. Science traditionally seeks the most fundamental, objective, and universal facts by confirming and measuring external reality through experiments. Psychology, however, while presuming both norms and anomalies in its dynamic descriptions and differential Revised from the original, "Jung and Pauli: A Subtle Asymmetry," The Journal of Analytical Psychology 40 (1995): 531-53. xxvii INTRODUCTION diagnoses, is concerned primarily with subjective experience and individual apprehension. As psychology describes psychic contents with psychic means, psyche is subject and object, medium and message, source and goal; there is no point of observation outside the human psyche. Physics, by contrast, pursues material reality both via and, to the greatest degree possible, beyond the human experience, but it also uses the mental medium in both its conceptions and inventions. While it utilizes impersonal and unvalenced measures, the questions and thus the proofs originate in and are dependent on the human mind. In this sense, our grasp of the universe is essentially anthropic. Also, as a contemporary Nobel laureate, the particle physicist Steven Weinberg, reminds us, "we cannot require that all experiments should give sensible results," because "by definition there is no observer outside the universe who can experiment on it."1 The letters between Pauli and Jung reveal two large minds in a twenty-sixyear correspondence about fields of expertise that, it could be argued, saw the most extensive developments in the Western intellect in the twentieth century. Each scholar was intent on moving the boundaries between the known and unknown in his own tradition. Each had the imagination to cross the lines within, beyond, and between their disciplines in order to search for the links between the observable and the unknowable. Each, too, had the humility essential to look for precedents in the past, as well as the arrogance necessary to risk speculation about the future. Each thinker was concerned with the effect of the particular and specific on the universal. Jung's concern was individual experience: the psyche's perception and conception, emotion, and imagination regarding inner and outer realities. He focused on the individual's psychic development as it interrelated with recurring, and thus collective, predispositions and representations of human experience. He was especially curious about the ways in which images produced by the psyche become unprovable but assumed beliefs. Pauli sought to prove theories about the nature of the tiniest particles in the ever-extending energy patterns of the material universe and to find the formulas and means of measurement that would reveal the universe's past, present, and future. While focusing on the most fundamental elements in the world's makeup, as a quantum theorist Pauli was also alert to the effect of the particular presence of the observer on what is observed. COMPLEMENTARITIES Jung (1875-1961) and Pauli (1900-1958) met in 1930, when Pauli, in life distress and psychic despair, sought out Jung for direction in attending to his emotional and psychological pain. While never Pauli's analyst, Jung re1 Weinberg 1994a, p. 48. xxviii JUNG AND PAULI viewed thirteen hundred of Pauli's dreams and studied a selection from the first four hundred of these. Over years of contact, the younger man's knowledge penetrated and influenced Jung's thought. In 1952, Jung and Pauli published a juxtaposition of their ideas in The Interpretation of Nature and the Psyche. In their work, they crossed paths on complementary vectors. As the phenomenal world is an aggregate of the processes of atomic magnitude, it is naturally of the greatest importance to find out whether, and if so how, the photons (shall we say) enable us to gain a definite knowledge of the reality underlying the mediative energy processes. . . . Light and matter both behave like separate particles and also like waves. This . . . obliged us to abandon, on the plane of atomic magnitudes, a causal description of nature in the ordinary space-time system, and in its place to set up invisible fields of probability in multidimensional spaces.2 Pauli? No, Jung. Division and reduction of symmetry, this then the kernel of the brute! The former is an ancient attribute of the devil. . . . If only the two divine contenders--Christ and the devil--could notice that they have grown so much more symmetrical!3 Jung? No, Pauli, in a letter written a year before his death to Werner Heisenberg, a lifelong friend and colleague. By the time that Jung met Pauli, he had been deeply affected and "tremendously impressed" for nearly three decades by William James. In Principles of Psychology, James posited coexisting and possibly split modes of consciousness--the "upper self" and the "under self"--which even while mutually unaware of and ignoring each other have complementary effects on each other. In The Varieties of Religious Experience, James wrote of the "field" that, despite the indeterminacy of its margins, guides attention and behavior.4 Jung adopted the Jamesian notion of psychic fields and the language regarding the complementary nature of the constituents of the psyche. When he was a psychiatrist at the Burghölzli clinic, trying to grasp the import of the striking images produced by disturbed patients, Jung began to find precedents for them in mythology, philosophy, religion, alchemy, and the historical notions of the natural sciences. At first compelled by the contents of these images, Jung became consistently more concerned with the process in and for which the psyche produced them. He postulated that dreams and autonomous fantasies were the complementary conceits by which the psyche attempts to retrieve or complete its knowledge in pursuit of greater consciousness and, in cases of imbalance or damage, to reestablish equilibrium and heal internal splits. 2 Jung 1947, par. 438. 3 Heisenberg 1971, p. 234. 4 Card 1991b, pp. 52-53. xxix INTRODUCTION James also perceived and named the complementarity between physical and depth-psychological fields, and drew attention to the correspondence of the concept of field in physics with the newly formulated psychological concept of the subconscious. It is thought that physicist Niels Bohr also borrowed from James the term complementarity, with which Bohr formulated the Principle of Complementarity that characterized his philosophy of nature.5 As a professor at Zurich's Eidgenossische Technische Hochschole (ETH), a leading university in the sciences, Jung was exposed to current theory. He saw psychology as an empirical science of observation, exploration, and ongoing reformulation. Throughout his life, he remained convinced that just as matter is in a constant process of redefinition, so too must psyche and spirit be continuously redefined. The development of Jung's thought and that of physics in the first half of the twentieth century are both complementary and symmetrical. In the studies on the association experiment that Jung published in 1904 to 1906 with Franz Riklin, he described psychological complexes as knots of psychic energy, each with its own agenda, charge, and resonance. The existence of these fields in the personal unconscious relativized the consciousness and autonomy of the ego. In 1905, Albert Einstein's annus mirabilis, "while also working out the quantum theory of light and a theory of the motion of small particles in fluid, Einstein developed a new theory of space and time, now called the special theory of relativity."6 Jung recalled that he had met Einstein in the "very early days when [he] was developing his first theory of relativity. . . . His genius as a thinker . . . exerted a lasting influence on my own intellectual work."7 In the Tavistock lectures, Jung remembered, "I pumped him about his relativity theory. I am not gifted in mathematics. . . . I went fourteen feet deep into the floor and felt quite small."8 In 1928, when Jung received the German translation of a Chinese alchemical treatise called "The Secret of the Golden Flower" from Richard Wilhelm, he felt immediate sympathy with the Chinese notion of time as a continuum in which certain qualities manifest relatively simultaneously in different places. In his 1929 essay on the "Golden Flower" and his 1930 Wilhelm memorial, Jung made reference to what he would call synchronicity as a parallelism of events that cannot be explained causally. Jung's reading of alchemy took him into a deep study of "all kinds of opposites" and, as he wrote twentyfive years later, led eventually to his understanding of the unconscious as a process. In Dreams of a Final Theory, Weinberg observes that Einstein's 1915 special theory of relativity "fit in well with a dualistic view of nature: there are 5 7 xxx Ibid. Jung 1974, p. 109. 6 8 Weinberg 1994, p. 98. Jung 1968, par. 140. JUNG AND PAULI particles, like the electrons, protons, and neutrons in ordinary atoms, and there are fields, like the gravitational or the electromagnetic field."9 Just five years later, the twenty-one-year-old Pauli, rather than feeling "fourteen feet deep into the floor," published his own critique of this relativity thesis. Einstein wrote: No one studying this mature, grandly conceived work could believe that the author is a man of 21. One wonders what to admire most, the psychological understanding for the development of ideas, the sureness of mathematical deduction, the profound physical insight, the capacity for lucid systematic presentation, the complete treatment of the subject matter, or the sureness of critical appraisal.10 In 1926, using his classmate Heisenberg's matrix mechanics, Pauli produced a quantum-mechanical calculation of hydrogen energy levels. It was an "exhibition of mathematical brilliance, a sage-like use of Heisenberg's rules and the special symmetries of the hydrogen atom. . . . No physicist alive was more clever."11 Pauli thus validated quantum mechanics, most simply described as "the study of the behavior of atoms and their constituents. Quantum is the Latin word for so much or bundle, and mechanics is the old term for the study of motion. Quantum mechanics is the study of the motion of things that come in little bundles"--in contrast to a relativity theory based on the assumption of point particles.12 By age twenty-eight, Pauli held the chair of theoretical physics in Zurich. With Bohr and Heisenberg, he arrived at a new philosophy for subatomic matter. In 1929, Pauli and Heisenberg presented a field theory of physics that elided the distinction between matter and force. They described both particles and forces as manifestations of a deeper level of quantum fields in which "not only photons but all particles are bundles of energy in various fields . . . electrons are bundles of the energy of the electron field; neutrin...