Devoir de Philosophie

Les probabilités : une pièce à conviction efficiente dans des procès criminels ?

Publié le 29/05/2024

Extrait du document

« Les probabilités : une pièce à conviction efficiente dans des procès criminels ? Introduction Imaginez-vous dans une salle d'audience, où le destin d'une personne repose sur les preuves présentées.

Souvent, des preuves physiques et des témoignages oculaires sont au cœur des délibérations.

Cependant, les probabilités et les statistiques jouent un rôle crucial, souvent invisible, dans la détermination de la culpabilité ou de l'innocence d'un accusé.

Dans cette présentation, nous allons explorer comment les probabilités peuvent devenir une pièce à conviction efficace dans les procès criminels. Les Fondamentaux des Probabilités en Justice Probabilités Conditionnelles Les probabilités conditionnelles sont essentielles pour évaluer des scénarios où plusieurs événements peuvent être liés.

Dans le contexte judiciaire, cela signifie évaluer la probabilité d'un événement (comme la culpabilité) en fonction d'une autre information (comme la présence de preuves). Exemple concret : Si un témoin affirme avoir vu l'accusé sur les lieux du crime, la probabilité conditionnelle nous aide à comprendre combien cette information augmente la probabilité que l'accusé soit coupable. Théorème de Bayes Le théorème de Bayes est un outil puissant pour mettre à jour nos croyances en fonction de nouvelles informations.

Il permet de réévaluer la probabilité d'un événement en intégrant de nouvelles données. 𝑝(culpabiliteˊ|preuve)= 𝑝(preuve|culpabiliteˊ)⋅𝑝(culpabiliteˊ)𝑝preuve) p(culpabilit eˊ |preuve)= p(preuve)p(preuve|culpabilit eˊ )⋅p(culpabilit eˊ ) Explication simple : Cela signifie que la probabilité de culpabilité, une fois une preuve présentée, est le produit de la probabilité de cette preuve si l'accusé est coupable, multipliée par la probabilité a priori de culpabilité, divisé par la probabilité totale d'obtenir cette preuve. Application des Probabilités dans les Procès Criminels Évaluation de la Fiabilité des Témoignages Oculaires Les témoignages oculaires peuvent être influencés par de nombreux facteurs (éclairage, stress, biais de mémoire).

Les statistiques montrent que ces témoignages peuvent être faillibles. Études statistiques : Des études montrent que jusqu'à 30% des témoignages oculaires peuvent être incorrects, ce qui souligne l'importance de contextualiser ces témoignages avec des probabilités conditionnelles. Analyse des Preuves ADN Les preuves ADN sont souvent considérées comme des preuves irréfutables.

Cependant, leur interprétation correcte nécessite une compréhension des probabilités. Exemple ADN : Si une correspondance ADN est trouvée, la probabilité qu'une personne au hasard.... »

↓↓↓ APERÇU DU DOCUMENT ↓↓↓

Liens utiles