Devoir de Philosophie

Correction exo mathématique

Publié le 03/02/2014

Extrait du document

?1? ????????? ?????????? ??y?? ?3? ?2? ?????? ???? ???????? ?????? ????????? ?1? ??3x?? ?2? ?1? ?0? ?1-? ?2-? ?3-? ?????? ????? ???? ???? ???????? ??????? ?1-? ?????????? ?2-? ?????? ??? ?????? ?????? ???????? ??????? ?3-? ?????????? ?? v???? ?? ??? ??? ????? ?????? ????? ????? ???????? ????????? ??????? ?? ?????? ???????? ????? ???? ??????? ?? ????? ?????..? ?? v????? ?????? ??? ????? ???????? ??? ????? ?????? ?? ??????? ???????? ??????? ?????? )???????? ??? ??????( ?? ??????????? )????? ???? ??? ??????( ?? ???????? ??????? )??????? ??????? ??????????( ? ??????? )?????? ??????( ...? ??????? ????? ???????? ??? ????? .? ?? v?? ??? ?????? ??? ??????? ??????? ????????? ? f + g?? ? f .g???????? ?????? ??? ??????? ???? ????????? ?????? ??????.? ?? v?????? ?????? ??????? ???? ???????? ??? ?????? ??? ??? ????????? ???????? ???? ????? ??????? ?????? ?????? ???? ????? ????? ?????? ?? ?????? ???????? ???????? ??? ??????.? ?? v????? ?????? ?????? ????? ??????? ????? ??????? ?????? ??????? ????????? ????????? ???? ??????? ???????? .? ??f?? ?? ? g????? ?????? ?1? ???????? ?1? ?1? ?2 ?1 + 2500t?? ?= ) ? h ( t????? 2 ?1 + 2500t?? ?2? ?2? ??????? 1 :? ?1( 2?. KL = 0, 25 + x?? ?????? : ??????? ??????? ??????? ????? ??? ??????? ?????????? ?????? ??? ????? .? ?1( 1 = ) 2- ( ? f?? 3 = ) 0 ( ? f?? 0 = )3 ( ?. f?? ??????? ???????? ?????? ?????? :? ?2( }2 ;4-{ = 1? S?? }3;1;3-{ = 2? S?? }0{ = 3?. S?? ??? 3??? ?3( }2 ;1;1-{ = 1? S?? ?. S2 = ?- ??? ??? 2??? ?4( [3;1] ? [3 - ;4- [ = 1? S?? ]3;2 [ ? ]1;1- [ = 2?. S?? ?5(? ?3? ?0? ?2? ?4-? ?0? ?3? ??x?? ?)?f ( x?? ??????? 2 :? ?????? : ??????? ???? ?????? ?????? ???? ??? ????? ???????? ?????? .? ??x?? ?= ? cos ??? )?. cos ? = f ( x?? ?1(? ?)?f ( x?? ??y?? ?71? ?61? ?51? ?41? ?31? ?21? ?11? ?01? ?9? ?8? ?7? ?6? ?5? ?4? ?3? ?2? ?1? ?3( ]1;0] ? ?. x?? ??????? 3 :? ?????? : ??????? ????? ?????? ??????? ???????? ??? ?????? ??? ??????? ???????.? ?1( ????? :? ?2( }1;4-{ = ?. S?? ?3( 0 = ) 4- ( ? h?? 0 = )1( ?. h?? ??????? 4 :? ?????? : ????? ?????? ????????? ??????? ???? ??????? ??????? ???????? .? ?1( ?????? ?2( ???? ??????? ??? ???2 4??? ??x?? ??A? ; ??? ???3 3??? ?3( }2{ - ¡ = ?. Dh?? ??????? 5 :? ??x?? ?321? ?2? ?1? ?2? ?)? ?2-? ?3-? ?1-? ?2-? ?(? ?)? ?(? ?(? ?)? ?)? ?(? ?(? ?(? ??????? ?????? ????? ????? .? ???????? ??????? ?????? : ?x a f ( x + b ) + k?? ?????? : ??????? ??????? ????? ????? ???? ?????? ??????? ??uuuuu?? ??r?? ?1( 2? M ' x + 1; x2 + 1 ? M x ; x????? )1;1( ' ?MM?? ??uuuuu?? ??r?? ?2( ?( ? g ( x - b ) = f ( x) + k????????? ) ?MM ' ( -b ; k?? ??rr?? ?' ? M????? ? M????????? ???? ????? ?-bi + k j?? ?)? ?3? ?1? ?2 ?. x a x2 . Y = X????? ????? .? ??????? ???? ??????? ?? 2- = ?. x?? ?1- ??x = X?? ?1? ?=?. Y?? ?? ????? ??????? ??????? ???? ?3(? ??X?? ?1+ ?? y = Y?? ?1? ?? x a????? ????? .???????? ???? ??????? ?? )1;1- ( .? ??x?? ?4( ??????? :? ??rr?? ???????? ????? ??????? : - ????? ?????? ?? ? O ; i ; j????? ??rr?? ?? Ohm ; i ; j???? ????? ? Ohm??? ? -. a?????? ?????? ) ?(C f?? ??rr?? ??? ? - Ohm ; i ; j?????? ?????? ?????? ????? ????? .? ??rr?? ???????? ????? ??????? : - ????? ?????? ?? ? O ; i ; j????? ??rr?? ??rr?? ?? -. Ohm ; i ; j?????? ?????? ) ? ( C f??? ? - Ohm ; i ; j??????? ?)? ??y?? ?0? ?3 + ) 2 - ? Y - 1 = ( X - 2 ) + 4 ( X???? ?????? ??? :? ?)? ?0 1- 2- 3- 4- 5-? ?1-? ?????? : ????? ?????? ????? ?? ????? ???? ???? :? ? ???? ????? - ???? ????? .???uuuu uuur uuuu?? ??r?? ??r?? ?1( ?OM = OOhm + OhmM?? ?2 - ??x = X?? ?? ??? 3 + ?y = f ( x) = x2 + 4 x?? ?2(? ?1- ?? y = Y?? ?2? ?1-? ?1-? ?6( ?????? ?????? ?????? ?? )1- ( ???? ?? ??? 4- = ?x?? ?? 2 = ? x?????? ?????? ?????? ?????? ?? 3 ?? ??? 0 = ?. x?? ?2( ?. f ( x) = x?? ?= ) ?f (t?? ?(? ?)? <...

« 2ا ﻷ ﻧ ﺸ ﻄ ﺔ ا ﻟ ﻨ ﺸ ﺎ ط 1 : فﺪﮭﻟا : تﻻدﺎﻌﻣ ﻞﺤﻟ ﺔﻟاﺪﻟ ﻲﻧﺎﯿﺒﻟا ﻞﯿﺜﻤﺘﻟا لﺎﻤﻌﺘﺳا ةﺮﯿﮭﺷ ﻢﯿﻗ ﻦﯿﯿﻌﺗو تﺎﺤﺟاﺮﺘﻣو .

1 (( )21f-= ؛ ( )03f= ؛ ( )30f=.

2 ( { }14;2S=- ؛ { }23;1;3S=- ؛ { }30S= .

3 ( { }11;1;2S=- ؛ 232Sìü=-íýîþ.

4 ( [ [ ] [14;31;3S=--È ؛ [ ] [ ]21;12;3S=-È .

5 ( 4- 0 2 3 x 3 0 1- 1- ( )fx 6 ( ﻲھ يﺮﻐﺼﻟا ﺔﯾﺪﺤﻟا ﺔﻤﯿﻘﻟا ( )1-ﻞﺟأ ﻦﻣ ﻚﻟذو 4x=- و2x=ىﺮﺒﻜﻟا ﺔﯾﺪﺤﻟا ﺔﻤﯿﻘﻟا ﺎﻤﻨﯿﺑ ﻲھ 3 ﻞﺟأ ﻦﻣ 0x=.

طﺎﺸﻨﻟا 2 : فﺪﮭﻟا : ﺔﻌﻄﻗ لﻮﻃ ﺮﯿﻐﺗ ﺔﺳارﺪﻟ ﺔﯿﻌﺟﺮﻣ ﺔﻟاد لﺎﻤﻌﺘﺳا ةﺮﯿﻐﺘﻣ ﺔﻤﯿﻘﺘﺴﻣ .

1 ( () cosxfxa= و ( )cosfxa= .

2 ( ( )fxx= .

3 ( ] ]0;1xÎ .

طﺎﺸﻨﻟا 3 : فﺪﮭﻟا : ﻲﻨﺤﻨﻣ ﻊﻃﺎﻘﺗ لﺎﻤﻌﺘﺳا ﻦﻣ ﺔﻟدﺎﻌﻣ ﻞﺤﻟ ﻦﯿﺘﯿﻌﺟﺮﻣ ﻦﯿﺘﻟاد ﺔﯿﻧﺎﺜﻟا ﺔﺟرﺪﻟا .

1 ( ﻢﺳﺮﻟا : 2 ( { }4;1S=- .

3 ( ( )40h-=؛ ()10h=.

طﺎﺸﻨﻟا 4 : فﺪﮭﻟا : ﻲﻤﮭﻔﻣ جاردإ ﻰﻠﻋ ﺔﯾﺮﺒﺠﻟا تﺎﯿﻠﻤﻌﻟا ﺔﯿﻌﺟﺮﻤﻟا لاوﺪﻟاو لاوﺪﻟا .

1 ( ﻢﺳﺮﻟا 2 ( ﻲھ ﻊﻃﺎﻘﺘﻟا ﺔﻄﻘﻧ 24;33Aæöç÷èø 3 ( { }2h D=-¡.

طﺎﺸﻨﻟا 5 : فﺪﮭﻟا :ﻦﯿﺘﻟاد ﺐﻛﺮﻣ مﻮﮭﻔﻣ .

ﺢﯿﺤﺼﺗ : ()25ftt= ﺎﺿﻮﻋ ()20ftt= ؛ yKL= ﺎﺿﻮﻋyML=.

()21125002htt=+ ﺎﺿﻮﻋ ()21125002ftt=+ 1 (20,25KLx=+.

ﺔﮭﺟﻮﻤﻟا لﺎﻤﻋﻷا ﻢﻠﻌﻤﻟا ﺮﯿﯿﻐﺗ : فﺪﮭﻟا : ﻞﺒﻘﯾ ﺔﻟاد ﻲﻨﺤﻨﻣ نأ تﺎﺒﺛﻹ ﻢﻠﻌﻤﻟا ﺮﯿﯿﻐﺗ : - ﺮﻇﺎﻨﺗ ﺰﻛﺮﻣ – ﺮﻇﺎﻨﺗ رﻮﺤﻣ .

1 (OMOM=W+Wuuuuruuuruuuur 2 (21xX yY=-ì í=-î ؛ ( )243yfxxx==++ ( ) ( ) 212423YXX-=-+-+ ﺪﺠﻧ بﺎﺴﺤﻟا ﺪﻌﺑ :2YX= .

2xxa.

ﺔﯿﺟوز ﺔﻟاد .

ﻲھ ﺮﻇﺎﻨﺘﻟا رﻮﺤﻣ ﺔﻟدﺎﻌﻣ2x=-.

3 ( 11xX yY=-ì í=+î ﺪﺠﻧ بﺎﺴﺤﻟاو ﺾﯾﻮﻌﺘﻟا ﺪﻌﺑ 1YX= .

1xxa ﺔﯾدﺮﻓ ﺔﻟاد .

ﻲھ ﺮﻇﺎﻨﺘﻟا ﺰﻛﺮﻣ ﻲﺘﯿﺛاﺪﺣإ ( )1;1- .

4 ( ﻞﺣاﺮﻤﻟا : ﺮﻇﺎﻨﺘﻟا رﻮﺤﻤﻟ ﺔﺒﺴﻨﻟﺎﺑ : - ﻦﻣ ﻢﻠﻌﻤﻟا ﺮﯿﯿﻐﺗ ( );;Oijrr ﻰﻟإ ( );;ijWrr ﺔﻠﺻﺎﻓ ﺚﯿﺣWﻲھ a.

- ﺔﻟدﺎﻌﻣ ﺔﺑﺎﺘﻛ ( )fC ﻲﻓ ( );;ijWrr - ﺔﯿﺟوز ﺎﮭﯿﻠﻋ ﻞﺼﺤﻤﻟا ﺔﻟاﺪﻟا تﺎﺒﺛإ .

ﺮﻇﺎﻨﺘﻟا ﺰﻛﺮﻤﻟ ﺔﺒﺴﻨﻟﺎﺑ : - ﻦﻣ ﻢﻠﻌﻤﻟا ﺮﯿﯿﻐﺗ ( );;Oijrr ﻰﻟإ ( );;ijWrr.

- ﺔﻟدﺎﻌﻣ ﺔﺑﺎﺘﻛ ( )fCﻲﻓ ( );;ijWrr - تﺎﺒﺛإ ﺔﯾدﺮﻓ ﺎﮭﯿﻠﻋ ﻞﺼﺤﻤﻟا ﺔﻟاﺪﻟا .

ﺔﻟاﺪﻠﻟ ﻲﻧﺎﯿﺒﻟا ﻞﯿﺜﻤﺘﻟا : ( )xfxbk++a فﺪﮭﻟا : بﺎﺤﺴﻧا ﺔﻄﺳاﻮﺑ ﺔﻟاد ﻲﻨﺤﻨﻣ ةرﻮﺼﻟ ﻲﻧﺎﯿﺒﻟا ﻞﯿﺜﻤﺘﻟا 1 ( ( )2;Mxx، ( )2'1;1Mxx++ ﮫﻨﻣو ( )'1;1MMuuuuur 2 ( أ ( ( ) ( )gxbfxk-=+ ﻲﻟﺎﺘﻟﺎﺑو ( )';MMbk-uuuuur 'M ةرﻮﺻ M ﮫﻋﺎﻌﺷ يﺬﻟا بﺎﺤﺴﻧﻻﺎﺑ bikj-+rr ب ( ( )gC ةرﻮﺻ ( )fCﻖﺑﺎﺴﻟا بﺎﺤﺴﻧﻻﺎﺑ 3 ( ( )gC ةرﻮﺻ ( )fCﮫﻋﺎﻌﺷ يﺬﻟا بﺎﺤﺴﻧﻻﺎﺑ bi-r.

4 ( ( )gC ةرﻮﺻ ( )fCﮫﻋﺎﻌﺷ يﺬﻟا بﺎﺤﺴﻧﻻﺎﺑ i-r.

( )hC ةرﻮﺻ ( )gCﮫﻋﺎﻌﺷ يﺬﻟا بﺎﺤﺴﻧﻻﺎﺑ 2jr ، وأ ( )hC ةرﻮﺻ ( )fC ﮫﻋﺎﻌﺷ يﺬﻟا بﺎﺤﺴﻧﻻﺎﺑ 2ij-+rr 23 -1 -2 -3 -4-52 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17011xy2 -1 -2-32 3 -1 -2011xy. »

↓↓↓ APERÇU DU DOCUMENT ↓↓↓

Liens utiles